Abstract
ObjectiveTo determine the feasibility of using a machine learning algorithm to screen for large vessel occlusions (LVO) in the Emergency Department (ED). Materials and methodsA retrospective cohort of consecutive ED stroke alerts at a large comprehensive stroke center was analyzed. The primary outcome was diagnosis of LVO at discharge. Components of the National Institutes of Health Stroke Scale (NIHSS) were used in various clinical methods and machine learning algorithms to predict LVO, and the results were compared with the baseline method (aggregate NIHSS score with threshold of 6). The Area-Under-Curve (AUC) was used to measure the overall performance of the models. Bootstrapping (n = 1000) was applied for the statistical analysis. ResultsOf 1133 total patients, 67 were diagnosed with LVO. A Gaussian Process (GP) algorithm significantly outperformed other methods including the baseline methods. AUC score for the GP algorithm was 0.874 ± 0.025, compared with the simple aggregate NIHSS score, which had an AUC score of 0.819 ± 0.024. A dual-stage GP algorithm is proposed, which offers flexible threshold settings for different patient populations, and achieved an overall sensitivity of 0.903 and specificity of 0.626, in which sensitivity of 0.99 was achieved for high-risk patients (defined as initial NIHSS score > 6). ConclusionMachine learning using a Gaussian Process algorithm outperformed a clinical cutoff using the aggregate NIHSS score for LVO diagnosis. Future studies would be beneficial in exploring prospective interventions developed using machine learning in screening for LVOs in the emergent setting.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.