Abstract

Chronic low-frequency noise from commercial shipping is a worldwide threat to marine animals that rely on sound for essential life functions. Although the U.S. National Oceanic and Atmospheric Administration recognizes the potential negative impacts of shipping noise in marine environments, there are currently no standard metrics to monitor and quantify shipping noise in U.S. marine waters. However, one-third octave band acoustic measurements centered at 63 and 125 Hz are used as international (European Union Marine Strategy Framework Directive) indicators for underwater ambient noise levels driven by shipping activity. We apply these metrics to passive acoustic monitoring data collected over 20 months in 2016–2017 at five dispersed sites throughout the U.S. Exclusive Economic Zone: Alaskan Arctic, Hawaii, Gulf of Mexico, Northeast Canyons and Seamounts Marine National Monument (Northwest Atlantic), and Cordell Bank National Marine Sanctuary (Northeast Pacific). To verify the relationship between shipping activity and underwater sound levels, vessel movement data from the Automatic Identification System (AIS) were paired to each passive acoustic monitoring site. Daily average sound levels were consistently near to or higher than 100 dB re 1 μPa in both the 63 and 125 Hz one-third octave bands at sites with high levels of shipping traffic (Gulf of Mexico, Northeast Canyons and Seamounts, and Cordell Bank). Where cargo vessels were less common (the Arctic and Hawaii), daily average sound levels were comparatively lower. Specifically, sound levels were ∼20 dB lower year-round in Hawaii and ∼10-20 dB lower in the Alaskan Arctic, depending on the season. Although these band-level measurements can only generally facilitate differentiation of sound sources, these results demonstrate that international acoustic indicators of commercial shipping can be applied to data collected in U.S. waters as a unified metric to approximate the influence of shipping as a driver of ambient noise levels, provide critical information to managers and policy makers about the status of marine environments, and to identify places and times for more detailed investigation regarding environmental impacts.

Highlights

  • Underwater acoustic environments are composed of many complex sound sources, collectively defined as the soundscape

  • 63 and 125 Hz one-third octave frequency band (TOB) sound levels measured in the Gulf of Mexico, Northeast Canyons, and Cordell Bank were of higher energy compared to Hawaii and the Beaufort Sea (Figure 2)

  • 63 and 125 Hz TOB sound levels varied over the widest range of dB in the Beaufort Sea; at that site sound levels were highest in both boreal spring (March-April) and late summer to early fall (August-October), and lowest in early summer (June-July) and November in both 2016 and 2017

Read more

Summary

Introduction

Underwater acoustic environments are composed of many complex sound sources, collectively defined as the soundscape. Underwater sound sources can be grouped into three main components: biological (e.g., whales, fish), natural abiotic (e.g., wind, underwater earthquakes) and anthropogenic (e.g., vessels, sonar, airguns). Sounds emanating from these biological, physical, and anthropogenic sources vary by intensity and duration as well as frequency range and temporal occurrence. Species that rely on sound for critical life functions (e.g., foraging, reproduction, navigation, predator avoidance) share acoustic space with other natural, physical, and anthropogenic sound sources. Decades of research on the effects of noise on marine animals has established that exposure to anthropogenic noise such as shipping, seismic airguns, construction, and sonar, can be detrimental to acoustic habitats and have negative impacts on the life history of soniferous species (Richardson et al, 1995; Thomsen et al, 2020)

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call