Abstract

This study examined for the first time the Hg isotope composition in rain samples from a single precipitation event at Lhasa City (China) on the Tibetan Plateau, the “world's third pole”. Large variations of both mass-dependent fractionation (MDF, δ202Hg from -0.80‰ to -0.42‰) and mass-independent fractionation (MIF, Δ199Hg from 0.38‰ to 0.76‰) were observed, with the latter increasing with time. Our results demonstrated that the large variation of Hg isotope ratios likely resulted from mixing of locally emitted Hg and long-term transported Hg, which were characterized by different Hg isotope signatures and mainly leached by below-cloud scavenging and in-cloud scavenging processes, respectively. Our findings demonstrated that Hg isotopes are a powerful tool for investigating the dynamics of precipitation events and emphasized the importance of systematic monitoring studies of the chemical and isotope variability of Hg and other elements during rainfall events.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.