Abstract
A prominent parameter in the context of network analysis, originally proposed by Watts and Strogatz (1998), is the clustering coefficient of a graph G. It is defined as the arithmetic mean of the clustering coefficients of its vertices, where the clustering coefficient of a vertex u of G is the relative density m(G[NG(u)])∕dG(u)2 of its neighborhood if dG(u) is at least 2, and 0 otherwise. It is unknown which graphs maximize the clustering coefficient among all connected graphs of given order and size.We determine the maximum clustering coefficients among all connected regular graphs of a given order, as well as among all connected subcubic graphs of a given order. In both cases, we characterize all extremal graphs. Furthermore, we determine the maximum increase of the clustering coefficient caused by adding a single edge.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.