Abstract

We derive a self-consistent local variant of the Thomas-Fermi approximation for (quasi-)two-dimensional (2D) systems by localizing the Hartree term. The scheme results in an explicit orbital-free representation of the electron density and energy in terms of the external potential, the number of electrons, and the chemical potential determined upon normalization. We test the method over a variety 2D nanostructures by comparing to the Kohn-Sham 2D-LDA calculations up to 600 electrons. Accurate results are obtained in view of the negligible computational cost. We also assess a local upper bound for the Hartree energy.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.