Abstract

We have developed a method to tune polarization-dependent optical absorption of large-scale chemical vapor deposition (CVD) graphene under total internal reflection (TIR) by strain engineering. Through control of the strain direction, the optical absorption of graphene for transverse magnetic or transverse electric waves can be separately tuned. Strain-induced modulation of the optical absorption has been theoretically expected when light is normally incident through graphene. Under TIR, however, we experimentally observed a significant increase in the strain-induced tunability of optical absorption for CVD graphene, with the modulation efficiency of optical absorption in monolayer graphene increasing by a factor of three times that for normal incidence. We conclude that the strain sensitivity of optical absorption of graphene under TIR offers significant potential for application in many areas such as ultra-thin optical devices and strain sensors.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.