Abstract

SummaryIn this paper we introduce a nonparametric estimation method for a large Vector Autoregression (VAR) with time‐varying parameters. The estimators and their asymptotic distributions are available in closed form. This makes the method computationally efficient and capable of handling information sets as large as those typically handled by factor models and Factor Augmented VARs. When applied to the problem of forecasting key macroeconomic variables, the method outperforms constant parameter benchmarks and compares well with large (parametric) Bayesian VARs with time‐varying parameters. The tool can also be used for structural analysis. As an example, we study the time‐varying effects of oil price shocks on sectoral U.S. industrial output. According to our results, the increased role of global demand in shaping oil price fluctuations largely explains the diminished recessionary effects of global energy price increases.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.