Abstract
SynopsisWe study the large-time behaviour of solutions to the initial value problem for hyperbolic-parabolic systems of conservation equations in one space dimension. It is proved that under suitable assumptions a unique solution exists for all time t ≧ 0, and converges to a given constant state at the rate t − ¼ as t → ∞. Moreover, it is proved that the solution approaches the superposition of the non-linear and linear diffusion waves constructed in terms of the self-similar solutions to the Burgers equation and the linear heat equation at the rate t − ½ +α, α > 0, as t →∞. The proof is essentially based on the fact that for t → ∞ the solution to the hyperbolic-parabolic system is well approximated by the solution to a semilinear uniformly parabolic system whose viscosity matrix is uniquely determined from the original system. The results obtained are applicable straightforwardly to the equations of viscous (or inviscid) heat-conductive fluids.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Proceedings of the Royal Society of Edinburgh: Section A Mathematics
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.