Abstract

The large-time asymptotic behaviour of real-valued solutions of the pure initial-value problem for Burgers' equation ut + uuxuxx = 0, is studied. The initial data satisfy u0(x) ~ nx as |x| , where n R. There are two constants of the motion that affect the large-time behaviour: Hopf considered the case n = 0 (i.e. u0L1(R)), and the case sufficiently small was considered by Dix. Here we completely remove that smallness condition. When n < 1, we find an explicit function U(), depending only on and n, such that uniformly in . When n 1, there are two different functions U() that simultaneously attract the quantity t12u(t12, t), and each one wins in its own range of . Thus we give an asymptotic description of the solution in different regions and compute its decay rate in L. Sharp error estimates are proved.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.