Abstract

We study the existence and the large time behavior of global solutions to the initial value problem for hyperbolic balance laws in n space dimensions with n≥3 admitting an entropy and satisfying the stable condition. We first construct global existence of the solutions to such a system around a steady state if the initial energy is small enough. Then we show that k-order derivatives of these solutions approach a constant state in the Lp-norm at a rate O(t−12(k+ρ+n2−np)) with p∈[2,∞] and ρ∈[0,n2] provided that initially ‖z0‖B˙2,∞−ρ<∞, where B˙2,∞−ρ is a homogeneous Besov space. These decay results do not impose an additional smallness assumption on Lp norm of the initial data and we thus improve the results in [3,19]. We also show faster decay results in the sense that if ‖Pz0‖B˙2,∞−ρ+‖(I−P)z0‖B˙2,∞−ρ+1<∞ with ρ∈(n2,n+22], k-order derivatives of the solutions approach a constant state in the Lp-norm at a rate O(t−12(k+ρ+1+n2−np)).

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.