Abstract

We study the asymptotic behavior as t→ +∞ of a system of densities of charged particles satisfying nonlinear drift-diffusion equations coupled by a damped Poisson equation for the drift-potential. In plasma physics applications the damping is caused by a spatio-temporal rescaling of an “unconfined” problem, which introduces a harmonic external potential of confinement. We present formal calculations (valid for smooth solutions) which extend the results known in the linear diffusion case to nonlinear diffusion of e.g. Fermi–Dirac or fast diffusion/porous media type.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.