Abstract

In this paper we study the linear stochastic heat equation, also known as parabolic Anderson model, in multidimension driven by a Gaussian noise which is white in time and it has a correlated spatial covariance. Examples of such covariance include the Riesz kernel in any dimension and the covariance of the fractional Brownian motion with Hurst parameter $H\in (\frac 14, \frac 12]$ in dimension one. First we establish the existence of a unique mild solution and we derive a Feynman-Kac formula for its moments using a family of independent Brownian bridges and assuming a general integrability condition on the initial data. In the second part of the paper we compute Lyapunov exponents, lower and upper exponential growth indices in terms of a variational quantity. The last part of the paper is devoted to study the phase transition property of the Anderson model.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.