Abstract

Large time behavior of solutions and finite difference approximation of a nonlinear system of integro-differential equations associated with the penetration of a magnetic field into a substance is studied. Two initial-boundary value problems are investigated: the first with homogeneous conditions on whole boundary and the second with nonhomogeneous boundary data on one side of lateral boundary. The rates of convergence are also given. Mathematical results presented show that there is a difference between stabilization rates of solutions with homogeneous and nonhomogeneous boundary conditions. The convergence of the corresponding finite difference scheme is also proved. The decay of the numerical solution is compared with the analytical results.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call