Abstract
Eigendecomposition of estimated covariance matrices is a basic signal processing technique arising in a number of applications, including direction-of-arrival estimation, power allocation in multiple-input/multiple-output (MIMO) transmission systems, and adaptive multiuser detection. This paper uses the theory of non-crossing partitions to develop explicit asymptotic expressions for the moments of the eigenvalues of estimated covariance matrices, in the large system asymptote as the vector dimension and the dimension of signal space both increase without bound, while their ratio remains finite and nonzero. The asymptotic eigenvalue distribution is also obtained from these eigenvalue moments and the Stieltjes transform, and is extended to first-order approximation in the large sample-size limit. Numerical simulations are used to demonstrate that these asymptotic results provide good approximations for finite systems of moderate size.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.