Abstract
Advanced materials with large and dynamic variation in thermal properties, sought for urgent defense and space applications, have heretofore been elusive. Conducting polymers (CPs) have shown some intrinsic variation of mid- to far-infrared (IR) signature in this respect, but the practical utilization of this has remained elusive. We report herein the first significant IR electrochromism in any material, to our knowledge, in the 0.4 through 45 μm region. This is seen in practical CP devices in the form of thin (<0.5 mm), flexible, entirely solid-state, variable area (1 cm2 to 1 m2) flat panels. Typical properties include: very high reflectance variation; switching times <2 s; cyclabilities of 105 cycles; emittance variation from 0.32 to 0.79; solar absorptance variation from 0.39 to 0.79; operating temperatures of –35 to +85 °C; durability against γ-radiation to 7.6 Mrad, vacuum to 10–6 torr, and simulated solar wind (e.g., 6.5 × 1016 e/cm2 @ 10 keV).
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.