Abstract

We studied the harmonic magnetodynamic behavior (without free space wave propagation) of a resonant surface metamaterial, made of many identical and regularly arranged LC cells. The circuit model gives the exact solution, but it is not numerically efficient for simulating very large structures (e.g., 1000 × 1000 cells giving 10 <sup xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">6</sup> unknowns with a full 10 <sup xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">6</sup> × 10 <sup xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">6</sup> matrix). For the first time, we highlight the modal characteristics of the spatial solutions, which make it possible to explain their frequency- and spatial-related properties. From these results, we show under what assumptions it is possible to significantly lighten the system of equations, which opens up the way to develop more efficient numerical methods.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.