Abstract

A miniature-positioning device with a large stroke motion has attracted more and more attentions in these years because of the intensive development in precision engineering. In this paper, we have achieved the large stroke actuating and the high precision positioning, as well as realized a multi-degree-of-freedom in-plane motion using the developed Galfenol impact drive mechanism (IDM) actuator. In order to enhance the system robustness, two pieces of U-shape Galfenol (iron–gallium alloy) have been employed as the driving elements with a bias magnetic field contributed by a permanent magnet to generate the swing motion that amplifies the propelling inertia force. The current amplitude modulation has been applied in the precision positioning of the actuator under the quasi-static condition because of the motion step-size fineness. The results show that the actuator is able to achieve a sub-micrometer positioning accuracy that has reached the measurement limit of our setup. Meanwhile, the frequency modulation method has been explored in the large stroke actuation with a high motion speed. We have found out that this design is capable of achieving an accurate positioning without the frequency modulation because of the intrinsic fine step-size of the actuator. In addition, a rectangular in-plane motion has been realized with the image-based control for the multi-degree-of-freedom positioning. The actuator has an inductive impedance with a resistance of 3.796Ω and an inductance of 0.4697mH. Under the present driving ratings, the power consumption is smaller than 1.97W while the reactive power can be ignored. Moreover, the experimental load analysis indicates that the design can achieve a maximum carry-load-to-weight ratio of 6.5.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.