Abstract

Multidirectional compression testing of 1100 aluminum cubes at room temperature in three orthogonal directions developed saturation flow stresses at very large accumulated strains. The saturation stress was found to be a function of the strain increment used, and followed a power-law relationship. The results correlated well with fatigue tests of aluminum and alpha iron. Copper data showed a similar but more pronounced behavior. The presence of dislocation cells, subgrains and dislocation tangles dominated the microstructure as observed by transmission electron microscopy. The microstructure changed in a systematic manner with accumulated straining. Significant differences in sizes and concentrations of cells and subgrains were found for unidirectional compared with multidirectional straining. These features were correlated using generally accepted relationships between individual substructural configurations and flow stress.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.