Abstract

An anisotropic elasto-plastic constitutive model of paper material is presented. It is formulated in a spatial setting in which anisotropic properties are accounted for by use of structural variables. A multiplicative split of the deformation gradient is employed to introduce plasticity. A similar approach is used to model the plastic deformation of the substructure. The yield surface adopted is based on the Tsai–Wu failure criterion, used previously to model failure of paper material. A non-associated plasticity theory is employed to calibrate the model to experimental data. It turns out that a multi-axial loading situation is needed to calibrate the model and here a biaxial tension test is audited. The model was implemented into a finite element environment and the creasing process of a corrugated board panel is investigated.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call