Abstract

AbstractA three‐dimensional fully coupled creep elastoplastic damage model at finite strain for isotropic non‐linear material is developed. The model is based on the thermodynamics of an irreversible process and the internal state variable theory. A hyperelastic form of stress–strain constitutive relation in conjunction with the multiplicative decomposition of the deformation gradient into elastic and inelastic parts is employed. The pressure‐dependent plasticity with strain hardening and the damage model with two damage internal variables are particularly considered. The rounding of stress–strain curves appearing in cycling loading is reproduced by introduction of the creep mechanism into the model. A numerical integration procedure for the coupled constitutive equations with three hierarchical phases is proposed. A consistent tangent matrix with consideration of the fully coupled effects at finite strain is derived. Numerical examples are tested to demonstrate the capability and performance of the present model at large strain.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.