Abstract

Designing efficient non-fused ring electron acceptors is of great importance in decreasing the material cost of organic photovoltaic cells (OPVs). It is a challenge to construct a planar molecular skeleton in non-fused molecules as there are many torsions between adjacent units. Here, we design two non-fused electron acceptors based on bithieno[3,2-b]thiophene units as core structures and study the impact of steric hindrance of substituents on molecular planarity. We use 2,4,6-triisopropylphenyl and 4-hexylphenyl groups to prepare ATTP-1 and ATTP-2, respectively. Our results suggest that the enhanced steric hindrance is beneficial for obtaining a more planar molecular configuration, which significantly increases the optical absorption and charge transport properties. The power conversion efficiency (PCE) of PBDB-TF:ATTP-1 combination (11.3%) is superior to that of PBDB-TF:ATTP-2 combination (3.7%). In addition, an impressive PCE of 10.7% is recorded in ATTP-1-based devices when a low-cost polythiophene donor PDCBT is used, which is an outstanding value in OPVs fabricated by non-fused donor/acceptor combinations. Our work demonstrates that modulation of the steric hindrance effect is of great significance to control the molecular planarity and thus obtain excellent photovoltaic performance of low-cost non-fused electron acceptors.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call