Abstract

We demonstrate that the amplitudes of optical solitons in nonlinear multisequence optical waveguide coupler systems with weak linear and cubic gain-loss exhibit large stable oscillations along ultra-long distances. The large stable oscillations are caused by supercritical Hopf bifurcations of the equilibrium states of the Lotka–Volterra (LV) models for dynamics of soliton amplitudes. The predictions of the LV models are confirmed by numerical simulations with the coupled cubic nonlinear Schrödinger (NLS) propagation models with 2 ≤ N ≤ 4 pulse sequences. Thus, we provide the first demonstration of intermediate nonlinear amplitude dynamics in multisequence soliton systems, described by the cubic NLS equation. Our findings are also an important step towards realization of spatio-temporal chaos with multiple periodic sequences of colliding NLS solitons.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.