Abstract

There is studied asymptotic behavior as \begin{document}$t\rightarrow T$\end{document} of arbitrary solution of equation \begin{document}$P_0(u):=u_t-\Delta u=a(t,x)u-b(t,x)|u|^{p-1}u \text{ in } [0,T)\times\Omega,$\end{document} where \begin{document}$\Omega$\end{document} is smooth bounded domain in \begin{document}$\mathbb{R}^N$\end{document} , \begin{document}$0 , \begin{document}$p>1$\end{document} , \begin{document}$a(\cdot)$\end{document} is continuous, \begin{document}$b(\cdot)$\end{document} is continuous nonnegative function, satisfying condition: \begin{document}$b(t, x)\geqslant a_1(t)g_1(d(x))$\end{document} , \begin{document}$d(x):=\textrm{dist}(x, \partial\Omega)$\end{document} . Here \begin{document}$g_1(s)$\end{document} is arbitrary nondecreasing positive for all \begin{document}$s>0$\end{document} function and \begin{document}$a_1(t)$\end{document} satisfies: \begin{document}$a_1(t)\geqslant c_0\exp(-\omega(T-t)(T-t)^{-1}) \forall t 0a_1(t)\geqslant c_0\exp(-\omega(T-t)(T-t)^{-1}) \forall t 0$\end{document} with some continuous nondecreasing function \begin{document}$\omega(\tau)\geqslant0$\end{document} \begin{document}$\forall\tau>0$\end{document} . Under additional condition: \begin{document}$\omega(\tau)\rightarrow\omega_0=\textrm{const}>0 \text{ as }\tau\rightarrow0$\end{document} it is proved that there exist constant \begin{document}$k:0 , such that all solutions of mentioned equation (particularly, solutions, satisfying initial-boundary condition \begin{document}$u|_\Gamma=\infty$\end{document} , where \begin{document}$\Gamma=(0, T)\times\partial\Omega\cup\{0\}\times\Omega$\end{document} ) stay uniformly bounded in \begin{document}$\Omega_0:=\{x\in\Omega:d(x)>k\omega_0^{\frac12}\}$\end{document} as \begin{document}$t\rightarrow T$\end{document} . Method of investigation is based on local energy estimates and is applicable for wide class of equations. So in the paper there are obtained similar sufficient conditions of localization of singularity set of solutions near to the boundary of domain for equation with main part \begin{document}$P_0(u)=(|u|^{\lambda-1}u)_t-\sum_{i=1}^N(|\nabla_xu|^{q-1}u_{x_i})_{x_i}$\end{document} if \begin{document}$0 .

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.