Abstract

Advancements in aerial mobility (AAM) are driven by needs in transportation, logistics, rescue, and disaster relief. Consequently, large-sized multirotor unmanned aerial vehicles (UAVs) with strong power and ample space show great potential. In order to optimize the design process for large-sized multirotors and reduce physical trial and error, a detailed dynamic model is firstly established, with an accurate aerodynamic model. In addition, the center of gravity (CoG) offset and actuator dynamics are also well considered, which are usually ignored in small-sized multirotors. To improve the endurance and maneuverability of large-sized multirotors, which is the key concern in real applications, a two-loop optimization method for rotor tilt angle design is proposed based on the mathematical model established previously. Its inner loop solves the dynamic equilibrium points to relax the complex dynamic constraints caused by aerodynamics in the overall optimization problem, which improves the solution efficiency. The ideal design results can be obtained through the offline process, which greatly reduces the difficulties of physical trial and error. Finally, various experiments are carried out to demonstrate the accuracy of the established model and the effectiveness of the optimization method.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.