Abstract

For decades, detailed studies on Early Weichselian deposits have been made in central Europe. In contrast, these studies are rare in Fennoscandia in northern Europe. We here integrate an extensive multi-proxy data set obtained on sediments of MIS 5d-c age that form part of a long sediment record preserved at Sokli in northern Finland. We make a detailed interpretation of the vegetation and depositional history for MIS 5d-c using pollen, macrofossils, diatoms and other siliceous microfossils, insect remains, and sediment characteristics, and combine these data with recently published estimates on July temperatures based on chironomids and selected plant indicator species in order to make inferences of paleo-climate regimes. The fossil record obtained on the seven meter thick MIS 5d-c deposit at Sokli is exceptionally rich in species due to the large variety of habitats associated with an overall fluvial depositional environment. A braided river system flanked by steppe-tundra vegetation is inferred for MIS 5d. Mean July temperatures of at least 12–14 °C are indicated by chironomids and plant indicator species and are in agreement with the presence of conifers and birch trees as recorded by macrofossils. The reconstructed environmental conditions suggest strong continental climate conditions at Sokli during MIS 5d. The gradual infilling of an oxbow lake and subsequent return to stream channel deposition is traced in great detail in the overlying gyttja and gravelly sediment of MIS 5c age. The terrestrial pollen and plant macrofossil record from the gyttja shows the establishment of birch forest followed by the spread of pine and then spruce. Rich plant indicator species assemblages indicate that the boreal environment at Sokli during MIS 5c experienced July temperatures several degrees higher than the present-day value of 13 °C. The high summer temperatures and presence of larch suggest more continental conditions. More open vegetation returned at Sokli during late MIS 5c and was followed by glaciation by the Fennoscandian Ice Sheet (MIS 5b). Despite the major differences in zonal vegetation types during MIS 5d-c, differences in reconstructed July temperatures are minor and suggest that winter temperatures combined with precipitation values mostly determined the stadial–interstadial climate variability. The most compelling conclusion from our study is that forest development during MIS 5c was remarkably similar to that recorded for the Eemian (MIS 5e) and Holocene Interglacials at the high-latitude site Sokli, and also to that inferred from MIS 5c sediments on the northern European mainland. Our results question the definition of MIS 5c in the terrestrial record of Europe as an interstadial interval of the last glacial cycle and suggest inclusion of MIS 5c together with the Eemian (MIS 5e) in an interglacial complex.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call