Abstract

AbstractTropical floodplains are an important source of methane (CH4) to the atmosphere, and ebullitive fluxes are likely to be important. We report direct measurements of CH4 ebullition in common habitats on the Amazon floodplain over two years based on floating chambers that allowed detection of bubbles, and submerged bubble traps. Ebullition was highly variable in space and time. Of the 840 floating chamber measurements (equivalent to 8,690 min of 10‐min deployments), 22% captured bubbles. Ebullitive CH4 fluxes, measured using bubble traps deployed for a total of approximately 230 days, ranged from 0 to 109 mmol CH4 m−2 d−1, with a mean of 4.4 mmol CH4 m−2 d−1. During falling water, a hydroacoustic echosounder detected bubbles in 24% of the 70‐m segments over 34 km. Ebullitive flux increased as the water level fell faster during falling water periods. In flooded forests, highest ebullitive fluxes occurred during falling water, while in open water and herbaceous plant habitats, higher ebullitive fluxes were measured during low water periods. The contribution of diffusive plus ebullitive CH4 flux represented by ebullition varied from 1% (high and rising water in open water of the lake) to 93% (falling water in flooded forests) based on bubble traps. Combining ebullitive and diffusive fluxes among habitats in relation to variations in water depth and areal coverage of aquatic habitats provides the basis for improved floodplain‐wide estimates of CH4 evasion.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.