Abstract

Seeking an excellent electrocatalyst is the trickiest issue for the application of urea electro-oxidation and electro-detection. Phosphorus-doped nickel plating on carbon fibers (Ni-P/CF) is synthesized by simple electroless plating. SEM results exhibit that the Ni-P densely and uniformly grows onto the surface of carbon fibers (CF), forming carbon fibers-like nanoarchitectures. Benefiting from the carbon fibers-like nano architectures with abundant exposed active sites on the surface of CF, electron transfer can be synchronously facilitated, and Ni-P/CF displays superior urea electrooxidation (UOR) performance with potentials of 1.40V to reach 100mAcm-2. Impressively, it can maintain at 20mAcm-2 for 48h without evident activity attenuation, demonstrating robust durability. Cycle stability shows that the voltage has only increased by 10mV at 300mAcm-2 from the 10th to 20000th cycles. Most importantly, Ni-P/CF at a length of 100cm with good reproducibility was successfully synthesized, denoting great potential for large-scale industrial production. Therefore, this work not only affords cost-effective tactics for urea-rich wastewater degradation but also can achieve practical medical applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.