Abstract

Due to the trade-off between the field of view and resolution of various microscopes, obtaining a wide-view panoramic image through high-resolution image tiles is frequently encountered and demanded in numerous applications. Here, we propose an automatic image mosaic strategy for sequential 2D time-lapse scanning electron microscopy (SEM) images. This method can accurately compute pairwise translations among serial image tiles with indeterminate overlapping areas. The detection and matching of feature points are limited by geographical coordinates, thus avoiding accidental mismatching. Moreover, the nonlinear deformation of the mosaic part is also taken into account. A smooth stitching field is utilized to gradually transform the perspective transformation in overlapping regions into the linear transformation in non-overlapping regions. Experimental results demonstrate that better image stitching accuracy can be achieved compared with some other image mosaic algorithms. Such a method has potential applications in high-resolution large-area analysis using serial microscopy images. RESEARCH HIGHLIGHTS: An automatic image mosaic strategy for processing sequential scanning electron microscopy images is proposed. A smooth stitching field is applied in the image mosaic. Improved stitching accuracy is achieved compared with other conventional mosaic methods.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call