Abstract
Boron nitride nanosheets (BNNSs) have an identical crystal structure and similar lattice parameter to those of graphene sheets. However, growing quality BNNSs consisting of only several atomic layers remains a challenge. Here, we report on the synthesis of BNNSs at a temperature of 350 °C using a CO2 pulsed laser plasma deposition (CO2-PLD) technique by irradiating a pyrolytic hexagonal boron nitride (h-BN) target. The deposition was performed either in vacuum at a pressure of 0.2 Pa, for which we obtained polycrystalline BN, or in hydrogen (H2) atmosphere at a pressure of 26 Pa for which we obtained single-crystal BNNSs. The presence of H2 seems to minimize the side effects of sputtering and the material shows higher purity and better crystallinity. High resolution transmission electron microscopy (HRTEM) showed the sheets to be mostly defect-free and to have the characteristic honeycomb structure of six-membered B3-N3 hexagon. HRTEM, electron diffraction, X-ray diffraction, Raman scattering, and Fourier transform infrared spectroscopy clearly identified h-BN.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.