Abstract

An easy, large-scale synthesis of N-doped carbon quantum dots (CQDs) was developed by using isophorone diisocyanate (IPDI) as a single carbon source under microwave irradiation. The yield of raw N-doped CQDs was about 83%, which is suitable for industrial-scale production. A detailed formation mechanism for N-doped CQDs involving self-polymerization and condensation of IPDI was demonstrated. Moreover, the obtained N-doped CQDs can be homogeneously dispersed in various organic monomers and do not need toxic organic solvents as dispersing agents. This advantage expands the range of applications of CQDs in composites. The N-doped CQDs dispersed in polyurethane (PU) matrixes emit not only fluorescence but also phosphorescence and delayed fluorescence at room temperature upon excitation with ultraviolet (UV) light. Furthermore, the phosphorescence of CQD/PU composites is sensitive to oxygen and therefore, the obtained-CQDs could be exploited in the development of novel oxygen sensors.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call