Abstract
In this work, SnO2 quantum dots with high crystallinity were synthesized on a large scale under mild reaction conditions via an epoxide precipitation route. The SnO intermediate, which was produced in the reactions between epoxide and [Sn(H2O)6]2+, was converted to SnO2 quantum dots by the oxidation of H2O2. It is believed that the protonation and the following ring opening of epoxide promoted the hydrolysis and condensation of [Sn(H2O)6]2+ to form the intermediate. The obtained quantum dots had a maximum specific capacitance of 204.4 F g−1 at a scan rate of 5 mV s−1 in 1 mol l−1 KOH aqueous solution. The electrochemical measurements proved that this high specific capacitance of SnO2 resulted from the Faradaic reactions between SnO2 and the electrolyte. This demonstrates for the first time that SnO2 can be used as a pseudocapacitive electrode material.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.