Abstract

Layered δ-MnO2 (birnessites) are ubiquitous in nature and have also been reported to work as promising water oxidation catalysts or rechargeable alkali-ion battery cathodes when fabricated under appropriate conditions. Although tremendous effort has been spent on resolving the structure of natural/synthetic layered δ-MnO2 in the last few decades, no conclusive result has been reached. In this Article, we report an environmentally friendly route to synthesizing homogeneous Cu-rich layered δ-MnO2 nanoflowers in large scale. The local and average structure of synthetic Cu-rich layered δ-MnO2 has been successfully resolved from combined Mn/Cu K-edge extended X-ray fine structure spectroscopy and X-ray and neutron total scattering analysis. It is found that appreciable amounts (∼8%) of Mn vacancies are present in the MnO2 layer and Cu2+ occupies the interlayer sites above/below the vacant Mn sites. Effective hydrogen bonding among the interlayer water molecules and adjacent layer O ions has also been observed for the first time. These hydrogen bonds are found to play the key role in maintaining the intermediate and long-range stacking coherence of MnO2 layers. Quantitative analysis of the turbostratic stacking disorder in this compound was achieved using a supercell approach coupled with anisotropic particle-size-effect modeling. The present method is expected to be generally applicable to the structural study of other technologically important nanomaterials.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call