Abstract

Abstract We analyzed the influence of wind-deriven horizontal heat advection on the large-scale [O(1000) km wavelength] variability of both the upper-ocean mixed-layer heat content and the subtropical frontal zone (SFZ) within an 11° by 10° domain in the western North Atlantic Ocean during FASINEX (January through June 1986). By estimating heat advection due to both Ekman transport and interior geostrophic (Sverdrup minus Ekman) transport from a slab mixed layer heat balance equation using satellite-derived sea surface temperature (Ts) and wind analysis maps, it was found that these processes could not account for the observed variability in either beat content or the SFZ. The annual cycle of surface vertical heat flux had the dominant influence on the heat content. Even when the average heat balance was analyzed during a 4-month time interval when the net influence of the annual cycle was nearly zero (mid-January to mid-May 1986), westward-propagating Ts spatial anomaly features with peak-to-peak scales ...

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.