Abstract
The connection between geomagnetic disturbances recurring with the 27 day synodic solar rotation period and streams of plasma emitted from particular regions on the Sun (so-called M-regions) has been one of the long-standing problems of solar terrestrial physics. The ‘ plasma streams ’ have been identified with long-lived streams of fast solar wind, imbedded in unipolar magnetic ‘ sectors', for more than a decade. The solar sources of these streams have been identified unequivocally only within the past few years as large-scale coronal regions of open, diverging magnetic fields and abnormally low particle densities, observed as ‘coronal holes’. The temporal evolution of holes and streams seems to reflect the evolution of the large-scale solar magnetic fields; the observed spatial pattern of holes suggests a grand three-dimensional structure of solar wind flow and interplanetary magnetic fields organized by a near-equatorial neutral sheet. The conclusion that much of the solar wind comes from coronal holes implies several important modifications of our ideas regarding the physical origins of the solar wind and any theoretical models of solar wind formation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.