Abstract

Social network analysis has many important applications and methods which depend on the sharing and publishing of graphs. For example, link privacy requires limiting the probability of an adversary identifying a target sensitive link between two individuals in the published social network graph. However, the existing link privacy protection methods have low processing power for large-scale graph data and less consideration of community protection in the publishing graphs. Therefore, aiming at sensitive link privacy protection, a large-scale social network privacy protection model to protect K-Core (PPMPK) was proposed. The large-scale social network graph was processed to ensure that the core number and the community structure of the nodes were unchanged based on the Pregel parallel graph processing model. Extensive experiments on the real data sets showed that the proposed method could effectively process the large-scale graph data and protect the data availability of the published graphs, especially in community protection.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.