Abstract

Cassava (Manihot esculenta Crantz) is one of the most important crop species being the main source of dietary energy in several countries. Marker-assisted selection has become an essential tool in plant breeding. Single nucleotide polymorphism (SNP) discovery via transcriptome sequencing is an attractive strategy for genome complexity reduction in organisms with large genomes. We sequenced the transcriptome of 16 cassava accessions using the Illumina HiSeq platform and identified 675,559 EST-derived SNP markers. A subset of those markers was subsequently genotyped by capture-based targeted enrichment sequencing in 100 F1 progeny segregating for starch viscosity phenotypes. A total of 2,110 non-redundant SNP markers were used to construct a genetic map. This map encompasses 1,785 cM and consists of 19 linkage groups. A major quantitative trait locus (QTL) controlling starch pasting properties was identified and shown to coincide with the QTL previously reported for this trait. With a high-density SNP-based linkage map presented here, we also uncovered a novel QTL associated with starch pasting time on LG 10.

Highlights

  • Cassava (Manihot esculenta Crantz) is one of the most important crop species for energy supply with a total production of 262 million tonnes from over 20 million hectares of cultivated area worldwide [1]

  • Starch viscosity is one of the important characteristics that determines the suitability of starch in each application [4, 5] and it is of interest to identify the quantitative trait loci (QTL) and candidate genes associated with this trait

  • To develop a large number of genic Single nucleotide polymorphism (SNP) markers across the genome, we sequenced the transcriptome from 16 cassava accessions maintained at the Cassava Research Center, Thailand

Read more

Summary

Introduction

Cassava (Manihot esculenta Crantz) is one of the most important crop species for energy supply with a total production of 262 million tonnes from over 20 million hectares of cultivated area worldwide [1]. Cassava is often cultivated in marginal, low fertility land with uncertain rainfall under low intensity management. Its remarkable tolerance to abiotic stresses and adverse environments along with minimal requirement for fertilizers make cassava an attractive crop for resource-limited smallholder farmers. High starch content in cassava (20–40%) makes it an excellent energy source both for human consumption and biofuel applications [2]. Cassava starch can be extracted to high purity with less protein and other associated contaminants compared to starch from other tuber and cereal sources [3]. Starch viscosity is one of the important characteristics that determines the suitability of starch in each application [4, 5] and it is of interest to identify the quantitative trait loci (QTL) and candidate genes associated with this trait

Objectives
Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call