Abstract
Integrated optics is an engineering solution proposed for exquisite control of photonic quantum information. Here we use silicon photonics and the linear combination of quantum operators scheme to realise a fully programmable two-qubit quantum processor. The device is fabricated with readily available CMOS based processing and comprises four nonlinear photon-sources, four filters, eighty-two beam splitters and fifty-eight individually addressable phase shifters. To demonstrate performance, we programmed the device to implement ninety-eight various two-qubit unitary operations (with average quantum process fidelity of 93.2$\pm$4.5%), a two-qubit quantum approximate optimization algorithm and efficient simulation of Szegedy directed quantum walks. This fosters further use of the linear combination architecture with silicon photonics for future photonic quantum processors.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.