Abstract
In this paper, we first demonstrate that positive semidefiniteness of a large well-structured sparse symmetric matrix can be represented via positive semidefiniteness of a bunch of smaller matrices linked, in a linear fashion, to the matrix. We derive also the “dual counterpart” of the outlined representation, which expresses the possibility of positive semidefinite completion of a well-structured partially defined symmetric matrix in terms of positive semidefiniteness of a specific bunch of fully defined submatrices of the matrix. Using the representations, we then reformulate well-structured large-scale semidefinite problems into smooth convex–concave saddle point problems, which can be solved by a Prox-method developed in [6] with efficiency $$\mathcal {O}(\epsilon^{-1})$$. Implementations and some numerical results for large-scale Lovasz capacity and MAXCUT problems are finally presented.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.