Abstract
Large scale deployment of Internet of Things (IoT) devices poses challenges in resource allocation. In this paper, alternating direction method of multipliers (ADMM) is adopted to solve such large scale resource allocation problems. Based on this, three optimization problems are investigated in a hierarchical IoT network. Considering ADMM could not solve a non-convex optimization problem directly, a non-convex fractional programming problem i.e., energy efficiency maximization problem for IoT region server, is formulated. Faced with this problem, we introduce the Dinkelbach algorithm to transfer the energy efficiency maximization problem into an equivalent convex optimization problem. Then the classic ADMM with two blocks is employed to solve the equivalent convex optimization problem. On the other hand, the classic ADMM with two blocks could not satisfy the convergence speed demands of the high-dimensional convex optimization problems any more. Thus, the network latency minimization problem for controller is designed and then solved by the Jacobian-ADMM algorithm in parallel. It is hard to satisfy controller and IoT region servers’ objectives at the same time. Given this, an incentive mechanism on the basis of Stackelberg game is designed. Thus a game-based resource allocation problem is proposed to deal with the contradiction between the centralized objective of the controller and the individual objectives from the IoT region servers. Based on the Dinkelbach algorithm and Jacobian-ADMM algorithm, a two-layer iterative resource allocation algorithm is posed to solve the game-based resource allocation problem. Last but not least, the convergence of the proposed algorithms are analyzed with numerous simulation results.
Highlights
The Internet of Things (IoT) is an emerging technology that proffers to connect massive smart devices together and to the Internet [1]
The energy efficiency maximization problem for each IoT region server is formulated as a non-convex fractional optimization problem, which could not be solved by alternating direction method of multipliers (ADMM) algorithm directly
We propose a distributed parallel algorithm which is named as Jacobian-ADMM-based resource allocation parallel algorithm
Summary
The Internet of Things (IoT) is an emerging technology that proffers to connect massive smart devices together and to the Internet [1]. They are the energy efficiency maximization problems for IoT region servers, the network latency minimization problem for controller and the game-based resource allocation problem. The energy efficiency maximization problem for each IoT region server is formulated as a non-convex fractional optimization problem, which could not be solved by ADMM algorithm directly. We propose a distributed parallel algorithm which is named as Jacobian-ADMM-based resource allocation parallel algorithm Under this algorithm, controller’s computing tasks are offloaded to IoT region servers. A game-based resource allocation problem is formulated to balance the controller’s objective and IoT region servers’ objectives, which is solved by the game-and-Jacobian-ADMM-based two-layer iterative resource allocation algorithm.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.