Abstract

Critical to the understanding of the genetic basis for complex diseases is the modeling of human variation. Most of this variation can be characterized by single nucleotide polymorphisms (SNPs) which are mutations at a single nucleotide position. To characterize an individual's variation, we must determine an individual's haplotype or which nucleotide base occurs at each position of these common SNPs for each chromosome. In this paper, we present results for a highly accurate method for haplotype resolution from genotype data. Our method leverages a new insight into the underlying structure of haplotypes which shows that SNPs are organized in highly correlated "blocks". The majority of individuals have one of about four common haplotypes in each block. Our method partitions the SNPs into blocks and for each block, we predict the common haplotypes and each individual's haplotype. We evaluate our method over biological data. Our method predicts the common haplotypes perfectly and has a very low error rate (0.47%) when taking into account the predictions for the uncommon haplotypes. Our method is extremely efficient compared to previous methods, (a matter of seconds where previous methods needed hours). Its efficiency allows us to find the block partition of the haplotypes, to cope with missing data and to work with large data sets such as genotypes for thousands of SNPs for hundreds of individuals. The algorithm is available via webserver at http://www.cs.columbia.edu/compbio/hap.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.