Abstract

Abstract Propagating features and waves occur everywhere in the ocean. This paper derives a concise description of how such small-amplitude, large-scale oceanic internal disturbances propagate dynamically against a slowly varying background mean flow and stratification, computed using oceanic data. For a flat-bottomed ocean, assumed here, the linear internal modes, computed using the local stratification, form a useful basis for expanding the oceanic shear modes of propagation. Remarkably, the shear modal structure is largely independent of orientation of the flow. The resulting advective velocities, which are termed pseudovelocities, comprise background flow decomposed onto normal modes, and westward planetary wave propagation velocities. The diagonal entries of the matrix of pseudovelocities prove to be reasonably accurate descriptors of the speed and direction of propagation of the shear modes, which thus respond as if simply advected by this diagonal-entry velocity field. The complicated three-dimensi...

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.