Abstract

Noncoding RNAs (ncRNAs) are emerging as key regulators of cellular function. We have exploited the recently developed barcoded ncRNA gene deletion strain collections in the yeast Saccharomyces cerevisiae to investigate the numerous ncRNAs in yeast with no known function. The ncRNA deletion collection contains deletions of tRNAs, snoRNAs, snRNAs, stable unannotated transcripts (SUTs), cryptic unstable transcripts (CUTs) and other annotated ncRNAs encompassing 532 different individual ncRNA deletions. We have profiled the fitness of the diploid heterozygous ncRNA deletion strain collection in six conditions using batch and continuous liquid culture, as well as the haploid ncRNA deletion strain collections arrayed individually onto solid rich media. These analyses revealed many novel environmental-specific haplo-insufficient and haplo-proficient phenotypes providing key information on the importance of each specific ncRNA in every condition. Co-fitness analysis using fitness data from the heterozygous ncRNA deletion strain collection identified two ncRNA groups required for growth during heat stress and nutrient deprivation. The extensive fitness data for each ncRNA deletion strain has been compiled into an easy to navigate database called Yeast ncRNA Analysis (YNCA). By expanding the original ncRNA deletion strain collection we identified four novel essential ncRNAs; SUT527, SUT075, SUT367 and SUT259/691. We defined the effects of each new essential ncRNA on adjacent gene expression in the heterozygote background identifying both repression and induction of nearby genes. Additionally, we discovered a function for SUT527 in the expression, 3’ end formation and localization of SEC4, an essential protein coding mRNA. Finally, using plasmid complementation we rescued the SUT075 lethal phenotype revealing that this ncRNA acts in trans. Overall, our findings provide important new insights into the function of ncRNAs.

Highlights

  • Eukaryotic cells express a wide variety of RNAs that do not code for proteins but contribute to the many essential functions within cells

  • NcRNA functional profiling in yeast noncoding RNAs that make up almost 25% of the yeast genome compared to the approximately 6,000 protein coding genes that make up 70% of the yeast genome

  • We have investigated in more detail the function of specific noncoding RNAs, revealing examples of how a deletion influences nearby genes, and other examples of noncoding RNAs that regulate genes at distant genomic locations

Read more

Summary

Introduction

Eukaryotic cells express a wide variety of RNAs that do not code for proteins but contribute to the many essential functions within cells. The process of protein synthesis by translation requires ribosomal RNAs (rRNAs) to form the ribosomal subunits and transfer RNAs (tRNAs) to bring the amino acids to the ribosome [1,2]. Another class of RNAs called small nucleolar RNA (snoRNAs) predominantly catalyze the modification or processing of other RNAs, but additional novel functions for snoRNAs are emerging [3]. Mutations in ncRNAs are increasingly being associated with human diseases [16,17,18]

Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.