Abstract
The generation of tissue-engineered constructs from stem cells for the treatment of musculoskeletal diseases may have immense impact in regenerative medicine, but there are difficulties associated with stem cell culture and differentiation, including the use of serum. Here we present serum-free protocols for the successful production of murine embryonic stem cell (mESC) derived osteoblasts and chondrocytes on CultiSpher S macroporous microcarriers in stirred suspension bioreactors. Various inoculum forms and agitation rates were investigated. Produced osteogenic cells were implanted ectopically into SCID mice and orthotopically into a murine burr-hole fracture model. Osterix, osteocalcin and collagen type I were upregulated in osteogenic cultures, while aggrecan and collagen type II were upregulated in chondrogenic cultures. Histological analysis using alizarin red S, von Kossa and alcian blue staining confirmed the presence of osteoblasts and chondrocytes, respectively in cultured microcarriers and excised tissue. Finally, implantation of derived cells into a mouse fracture model revealed cellular integration without any tumor formation. Overall, microcarriers may provide a supportive scaffold for ESC expansion and differentiation in a serum-free bioprocess for in vivo implantation. These findings lay the groundwork for the development of clinical therapies for musculoskeletal injuries and diseases using hESCs and iPS cells.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.