Abstract

Here we describe a generic procedure for the expression and purification of milligram quantities of functional recombinant eukaryotic integral membrane proteins, exemplified by hexahistidine-tagged bovine rhodopsin. These quantities were obtained with the recombinant baculovirus/Sf9 insect cell-based expression system in large-scale bioreactor cultures with the use of a serum-free and protein-free growth medium. After optimization procedures, expression levels up to 4 mg/l were established. The recombinant rhodopsin could be purified with high overall yield by using immobilized-metal-affinity chromatography on Ni2+-agarose. After reconstitution into a native lipid environment, the purified protein was functionally indistinguishable from native rhodopsin with regard to the following parameters: spectral absorbance band, structural changes after photoactivation, and G-protein activation. The procedures developed can be adapted to other membrane proteins. The ability to produce and purify tens of milligrams of functional recombinant eukaryotic membrane protein meets the ever-increasing demand of material necessary to perform detailed biochemical and structural biophysical studies that are essential in unravelling their working mechanism at a molecular level.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.