Abstract

We report an improved Hummers method for synthesizing graphene quantum dots (GQDs) by directly oxidizing and etching graphite powders. The yield of GQDs is as high as 63 ± 7% (by weight, wt%), suggesting this technique is suitable for producing GQDs on a large scale. The GQDs are nanocrystals with lateral dimensions in the range of 2-4 nm and an average thickness of around 1.3 nm. The emission peaks of as-prepared GQDs can be tuned in the range of 440 to 510 nm by varying the reaction conditions. Their fluorescence quantum yields were tested to be around 1%, which could be further increased to about 3% by hydrothermal treatment. These GQDs have low cytotoxicity and excellent biocompatibility, indicating that they are promising for biological applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.