Abstract

Developing novel biomaterials integrating robustness and multitasking separation performance are of importance. However, those were limited in application due to the expensive, time-consuming and complex fabrication process. In this work, with the inspiration from high porosity and surface area of natural materials, the porous superhydrophobic melamine sponges (SMS) coated hydrophobic TiO2 and epoxy copolymer were fabricated via a facile, inexpensive, eco-friendly and large-scale strategy. The SMS showed excellent superhydrophobic property, and could well resist the harsh mechanical damage, chemical corrosion, extreme temperature, and irradiation of UV without losing antiwetting ability. Besides, it displayed selective oil absorbing ability, recyclability, and self-cleaning ability. Moreover, the SMS displayed superior multitasking performance for continuous oil/water separation, surfactant-stabilized O/W emulsions separation (separation efficiency above 99%), and bacterial/fungus containing filtration (filtration efficiency over 60% for S. aureus, 90% for E. coli and C. albicans). With the multifaceted features, the SMS is a promising sponge material for treatment of industry oily or bacterial/fungus-containing wastewater in practical application.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.