Abstract

Superactive ovine leptin antagonist (SOLA) was prepared by rational mutagenesis of the ovine leptin antagonist L39A/D40A/F41A mutant prepared previously in our lab by mutating wild type leptin to D23L/L39A/D40A/F41A. SOLA was expressed in Escherichia coli as insoluble inclusion bodies, refolded and purified to homogeneity (as evidenced by SDS–PAGE and analytical gel filtration) by ion-exchange chromatography. The purified protein was mono-pegylated at its N terminus by 20-kDa linear pegylation reagent. The D23L mutation resulted in ca. 5- to 6-fold increased affinity toward soluble human leptin binding domain and 6- to 8-fold increased inhibitory activity in two different in vitro bioassays. This increase was similar, though not identical, to our previous results with superactive mouse and human leptin antagonists. Pegylation decreased overall activity by 5- to 8-fold, but as shown previously for superactive mouse leptin antagonist, the prolonged half life in the circulation will likely result in higher activity in vivo. As amino acids 6–31 (VQDDTKTLIKTIVTRINDISHTQSVS), making up a main part of the first α-helix, are identical in human, mouse, rat, ovine, bovine and pig leptins, we anticipate that D23L mutations of the respective leptins will result in similar increases in affinity and consequent activity of other leptin antagonists.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.