Abstract

BackgroundChronic airway diseases including chronic obstructive pulmonary disease (COPD) and asthma are heterogenous in nature and endotypes within are underpinned by complex biology. This study aimed to investigate the utility of proteomic profiling of plasma combined with bioinformatic mining, and to define molecular endotypes and expand our knowledge of the underlying biology in chronic respiratory diseases.MethodsThe plasma proteome was evaluated using an aptamer‐based affinity proteomics platform (SOMAscan®), representing 1238 proteins in 34 subjects with stable COPD and 51 subjects with stable but severe asthma. For each disease, we evaluated a range of clinical/demographic characteristics including bronchodilator reversibility, blood eosinophilia levels, and smoking history. We applied modified bioinformatic approaches used in the evaluation of RNA transcriptomics.ResultsSubjects with COPD and severe asthma were distinguished from each other by 365 different protein abundancies, with differential pathway networks and upstream modulators. Furthermore, molecular endotypes within each disease could be defined. The protein groups that defined these endotypes had both known and novel biology including groups significantly enriched in exosomal markers derived from immune/inflammatory cells. Finally, we observed associations to clinical characteristics that previously have been under‐explored.ConclusionThis investigational study evaluating the plasma proteome in clinically‐phenotyped subjects with chronic airway diseases provides support that such a method can be used to define molecular endotypes and pathobiological mechanisms that underpins these endotypes. It provided new concepts about the complexity of molecular pathways that define these diseases. In the longer term, such information will help to refine treatment options for defined groups.

Highlights

  • Chronic airway diseases such as chronic obstructive pulmonary disease (COPD) and asthma are common and significant causes of morbidity and mortality

  • This study indicated that there are molecular pathways defined by systemic proteomics that differ between COPD and severe asthma even when they share clinical and demographic features such as blood eosinophilia, bronchodilator reversibility, and smoking history

  • These included pathways involved in metabolic and biosynthetic processes, mitochondria organization, regulation of the cell cycle, and growth factor signaling

Read more

Summary

Introduction

Chronic airway diseases such as chronic obstructive pulmonary disease (COPD) and asthma are common and significant causes of morbidity and mortality. Chronic airway diseases including chronic obstructive pulmonary disease (COPD) and asthma are heterogenous in nature and endotypes within are underpinned by complex biology. This study aimed to investigate the utility of proteomic profiling of plasma combined with bioinformatic mining, and to define molecular endotypes and expand our knowledge of the underlying biology in chronic respiratory diseases. Conclusion: This investigational study evaluating the plasma proteome in clinically‐ phenotyped subjects with chronic airway diseases provides support that such a method can be used to define molecular endotypes and pathobiological mechanisms that underpins these endotypes. It provided new concepts about the complexity of molecular pathways that define these diseases. In the longer term, such information will help to refine treatment options for defined groups

Objectives
Methods
Findings
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call