Abstract

Globally, solar projects are being rapidly built or planned, particularly in high solar potential regions with high energy demand. However, their energy generation potential is highly related to the weather condition. Here we use state-of-the-art Earth system model simulations to investigate how large photovoltaic solar farms in the Sahara Desert could impact the global cloud cover and solar generation potential through disturbed atmospheric teleconnections. The results indicate negative impacts on solar potential in North Africa (locally), Middle East, Southern Europe, India, Eastern China, Japan, Eastern Australia, and Southwestern US, and positive impacts in Central and South America, the Caribbean, Central & Eastern US, Scandinavia and South Africa, reaching a magnitude of ±5% in remote regions seasonally. Diagnostics suggest that large-scale atmospheric circulation changes are responsible for the global impacts. International cooperation is essential to mitigate the potential risks of future large-scale solar projects in drylands, which could impact energy production.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.