Abstract

In the past decade, metal halide perovskite polycrystalline films have witnessed significant advancements in the field of high‐performance optoelectronic devices, including photodetectors, solar cells, light‐emitting diodes, and lasers. Perovskite films with periodic micro/nanoarrays have garnered substantial attention due to their capability not only to improve the efficiency of individual devices but also to hold great promise for future commercialization. Surpassing their polycrystalline counterparts, perovskite single crystals typically exhibit longer carrier diffusion lengths, extended carrier lifetimes, and enhanced carrier mobility due to the absence of grain boundaries and reduced defects, positioning them as promising candidates for both fundamental studies and advanced optoelectronic devices. To this end, significant endeavors have been dedicated to the development of diverse methodologies for synthesizing large‐scale perovskite single crystals, including bulk single crystals and single‐crystal thin films. Furthermore, aiming to integrate the distinctive functionality with single crystals, considerable efforts have been directed toward the design of certain patterns on single‐crystal surfaces. Herein, this review presents recent progress in technologies for the preparation of large‐scale single crystals and the approaches to patterning their surfaces, highlights the unique advantages of each method, and presents their promising advances in various optoelectronic applications as well as the potential challenges.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call